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Interferometers and decoherence matrices
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It is shown that the Lorentz group is the natural language for two-beam interferometers if there are no
decoherence effects. This aspect of the interferometer can be translated into six-parameter representations of
the Lorentz group, as in the case of polarization optics where there are two orthogonal components of one light
beam. It is shown that there are groups of transformations which leave the coherency or density matrix
invariant, and this symmetry property is formulated within the framework of Wigner's little groups. An
additional mathematical apparatus is needed for the transition from a pure state to an impure state. Decoher-
ence matrices are constructed for this process, and their properties are studied in detail. Experimental tests of
this symmetry property are possible.

PACS numbds): 42.25.Ja, 02.26.a

[. INTRODUCTION will transform a pure-state Stokes vector into a mixed-state
Stokes vector. Unlike the case of attenuations, rotations, or
In our earlier paper§1—4], we formulated polarization beam splits and syntheses, the decoherence matrix does not

optics in terms of the X2 and 4x 4 representations of the Pelong to the Lorentz group.
six-parameter Lorentz group. It was noted that the two- In order to study the decoherence process more carefully,

component Jones vector and the four-component Stokes p /e borrow the concept of Wigner's little group originally

rameters are like the relativistic spinor and the Minkowskian e?nveer!(t)e? redp];)rrti?:}gg%/ gg\;\?iﬁrzgilsslﬁﬁgz:gg issytrﬂénr?gfi?rgl el-
four-vector, respectively. We were able to identify the at- y s

. ) . subgroup of the Lorentz group whose transformations leave
tenuator, rotator, and phase shifter with appropriate transfor, group group

. ; the four-momentum of a given particle invariant. In the
mation matrices of the Lorentz group. It was noted that the,resent case, the little group consists of transformations on a

two-element Jones vector is like the two-component Paulyiven density matrix which will leave that matrix invariant.
spinor, and that the four Stokes parameters act like the €l is shown in this paper that the little group for pure states is
ments of a Minkowskian four-vector. like that for massless particles, while the little group for im-
The purpose of this paper is to show that the mathematicgure states is like that for massive particles. The transition of
of polarization optics is also applicable to interferometersihe little group from a pure to impure state is discussed in
Our reasoning is that polarization optics is basically thedetail.
physics of two plane waves. The same is true for two-beam In Sec. Il, we show how each element in the two-beam
interferometers. We need mathematical devices which wilinterferometer system corresponds to a transformation matrix
perform phase shifts between the waves, and which will takén the Lorentz group. The combined effect is th& 2 rep-
care of attenuations at different rates. In the case of interferresentation of the six-parameter Lorentz group. In Sec. lll, it
ometers, it is possible to achieve the beam split and synthesig pointed out that the coherency matrix can also be defined
by rotation matrices. We can use the matrices of the abovéor the interferometer system, and that this matrix serves as

mentioned Lorentz group in order to achieve these basithe density matrix. The transformation property of the den-
physical operations. sity matrix is discussed in detail. In Sec. IV, we introduce the

In addition, in this paper, we discuss the mathematica|itt,|e group which will leave a given density matrix invariant.
device which will describe the decoherence effect due tdt IS Noted that the little group for pure states has a symmetry
random phases. For this purpose, we need density matricd¥OPerty quite different from that for impure states. In Sec.

However, the coherency matrix serves as the density matrix/» the decoherence matrices are discussed in detail. Al-
and its four elements constitute the four components of th&'0ugh the augmentation of this matrix to the Lorentz group

Stokes vectof5,6]. It was noted in our previous paper that it 1€2ds t0 a large group, there exist subgroups exhibiting sym-

is possible to construct a>d4 decoherence matrix which metry properties famil_iar to us. Possible experiments with
the decoherence matrix are suggested.

. II. FORMULATION OF THE PROBLEM
*Electronic address: han@trmm.gsfc.nasa.gov

"Electronic address: yskim@physics.umd.edu Typically, one beam is divided into two by a beam split-
*Electronic address: noz@nucmed.med.nyu.edu ter. We can write the incoming beam as
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expi(kz— wt of the form of Eq.(2.6) lead to a 2<2 representation of the
1 pli( )}
v= = 0 . (2.1)  six-parameter Lorentz group. The transformation matrix in
P2 general takes the form
Then the beam splitter can be written in the form of a rota- a B
tion matrix[9] G:( ) 5), (2.9

(2.2 applicable to the column vector of E(.1), where all four
elements are complex numbers with the condition that the

_(COS(G/Z) —sin(0/2))
~\sin(6/2)  cog6r2) |’

which transforms the column vector of E@.1) into determinant of the matrix be 1. _
Although we can borrow all the elegant mathematical
A [coq 6/2) Jlexpi(kz— wt)} identities of the % 2 representations of the Lorentz group,
W) | —[sin(6/2)expli (kz— wt)} )" (2.3 this formalism does not allow us to describe the loss of co-

herence within the interferometer system. In order to study
The first beamy, of Eq. (2.1) is now split intoy; andy, of  this effect, we have to construct the coherency matrix
Eq. (2.3. The intensity is conserved. If the rotation angle

is -m/4, the initial beam is divided into two beams of the :<Sll 812) (2.10
same intensity and the same ph§$e]. S)1 Sy’ '
These two beams go through two different optical path
lengths, resulting in a phase difference. If the phase differwith
ence is¢, the phase shift matrix is N .
_ Su= 1), Suo=(¥3 ¥2),
e*ld)/Z 0 (21])
P(¢)= ( 0 e ¢>/2> : (2.4 Sw=(¥12),  Saua=(¥3 1)

When reflected from mirrors, or while going through It is sometimes more convenient to use the following com-
beam splitters, there are intensity losses for both beams. TH¥nations of parameters:
rate of loss is not the same for the beams. This results in an

attenuation matrix of the form So=S11t+ S,
e o) . e 0 2.125,=S,,~ Sy,
e M2 e 0 e 72 29 (2.12
S;= S5+ S,

with »= n,— 7. This attenuator matrix tells us that the elec- )

tric fields are attenuated at two different rates. The exponen- Sz=—i(S12~ S20)-
tial factor e (7% 72’2 reduces both components at the sam .
rate and does not affect the degree of polarization. The E!ﬁe?_‘r‘hese four parameters are called the Stokes parameters in the

of polarization is solely determined by the squeeze matrix iterature[11,12), usually in connection with polarized light
waves. In the present paper, we are applying these param-

e”2 o eters to two separate beams in a given interferometer system.

S( 7;)=( 7]/2> . (2.6 The Stokes parameters, originally developed for polariza-
0 e tion optics, are becoming applicable to other branches of

ysics dealing with two orthogonal states. In this paper, we
e these parameters for interferometers.
We have shown previousl?] that the 4x 4 transforma-
tion matrices applicable to the Stokes parameters are like
Lorentz-transformation matrices applicable to the space-time
1/1 -1 Minkowskian vector {,z,X,y). This allows us to study
—( ) (2.7  space-time symmetries in terms of the Stokes parameters
\/E 11 which are applicable to interferometers. Let us first see how
the rotation matrix of Eq(2.2) is translated into the % 4

In the detector or the beam synthesizer, the two beamgh
undergo a superposition. This can be achieved by the rota!S
tion matrix like the one given in Eq2.2) [9]. For instance,
if the angled is 90°, the rotation matrix takes the form

If this matrix is applied to the column vector of EQ.3), the formalism. In this case,
result is
= §=c0g6/2), =—B=sin(0/2). 2.1
1 (v . a K0/2), y=-p=sin6/2). (2.13
2\ i+ i) @9 The corresponding % 4 matrix takes the forni4]

0 0 0
cosf —sind

The upper and lower components show the interferences
with negative and positive signs, respectively.
We have shown in our previous papers that repeated ap- R(0)=
plications of the rotation matrices of the form of HG.2),
shift matrices of the form of Eq2.4) and squeeze matrices

(2.19

o O O -

0
sind cosd O]
0 0 1
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et us next see how the phase-shift matrix of Ej4) is  not change the four-momentum of the particle, even though
translated into this four-dimensional space. For this2 they change the direction of the spin. There are also massless
matrix, particles which cannot be brought to rest. This is the reason
_—igh2 o il why the little group for a massive particle is different from
a=e 7%, B=y=0, 6=e"" (219 that of the massless particle. The little group for massless
particles is like (or locally isomorphic td the two-

For these values, the>d4 transformation matrix takes the dimensional Euclidean group, ).

form [4] Indeed, in Ref[4], we discussed Wigner rotations and
1 0 0 0 Iwasawa decompositions rotations applicable to massive and
massless particles, respectively, and how these little-group
P(¢)= 0 1 0 0 (2.16 transformations can be applied to the Stokes four-vectors. In
0 0 cosp —sing ' this section, we shall see that the Stokes vectors for pure and
0 0 si impure states are like the four-momentum of the massless
sing  cos¢ . X .
and massive particles, respectively.
For the squeeze matrix of E(R.6), In the following discussion, we will need transformations
of the Stokes four-vectors and the corresponding transforma-
a=e"  B=y=0, o=e "2 (2.17  tions of the 22 density matrices. We are quite familiar
. ) ) with 4 X4 matrices applicable to the Stokes vectors. For the
As a consequence, itod4 equivalent is 2% 2 density matrices, the transformation takes the form
coshn sinhm O 0O Under the influence of th& transformation given in Eq.
K K (2.9), this coherency matrix is transformed as
sinhp coshnp 0 O
Stm=| 0 1 0 (2.18 C’:GCGT=<Sil s;z> (e 3)(811 slz>
0 0 0 1 S Snl \v 8/1Sa Sp
If the above matrices are applied to the four-dimensional a* Y
Minkowskian space oft(z,x,y), the above squeeze matrix X g* &) (3.9)

will perform a Lorentz boost along theor S; axis, with S,
as the time variable. The rotation matrix of HQ.14 will whereC andG are the density matrix and the transformation
perform a rotation around thgor S; axis, while the phase matrix given in Eqs(2.10 and (2.9), respectively. Accord-
shifter of Eq.(2.16) performs a rotation around theor the  ing to the basic property of the Lorentz group, these trans-
S; axis. Matrix multiplications withR(6) andP(¢) lead to  formations do not change the determinant of the density ma-
the three-parameter group of rotation matrices applicable ttrix C. Transformations which do not change the determinant
the three-dimensional space &,(S,,S;3). are called unimodular transformations.

The phase shifteP(¢) of Eq. (2.16 commutes with the As we shall see in this section, the determinant for pure
squeeze matrix of E¢2.18), but the rotation matrixx(6) states is zero, while for that for mixed states does not vanish.
does not. This aspect of matrix algebra leads to many inters there then a transformation matrix which will change this
esting mathematical identifies which can be tested in laboradeterminant within the Lorentz group. The answer is no. This
tories. One of the interesting cases is that we can produceia the basic issue we would like to address in this section.
rotation by performing three squeeZéd. Another interest- If the phase difference between the two waves remains
ing case is a combination of squeeze and rotation will prointact, the system is said to in a pure state, and the density
duce a matrix which will convert numerical multiplication matrix can be brought to the form
into addition. This aspect, known as the lwasawa decompo-
sition, is discussed in detail in Re#]. 10

0 o (3.2

IIl. DENSITY MATRICES AND THEIR LITTLE GROUPS ) ) ) )
through the transformation of E¢3.1) with a suitable choice

According to the definition of the density matii€], the  of the G matrix. For the pure state, the Stokes four-vector
coherency matrix of Eq(2.10 is also the density matrix. takes the form

Since we discussed transformation properties of coherency
matrices in our earlier papef4,2], we can start here with
those results on this subject.

The most effective way of formulating the symmetry
property of a given physical system is to construct a group of
transformations which leave the system invariant. This con-
cept was originally developed by Wigné¥] for internal
space-time symmetries of relativistic particles. Wigner's In order to study the symmetry properties of the density
little group is the maximal subgroup of the Lorentz group matrix, let us ask the following question. Is there a group of
whose transformations leave the four-momentum of a givertransformation matrices which will leave the above density
particle invariant. For instance, for a particle at rest, the littlematrix invariant? In answering this question, it is more con-
group is the three-parameter rotation group. The rotations deenient to use the Stokes four-vector. The column vector of

(3.3

o O - B
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Eq. (3.3 is invariant under the operation of the phase shifter
P(¢#) of Eg. (2.16. In addition, it is invariant under the
following two matrices:

(3.7)

O O O B

1+u?/2  —u?2
u2  1-u?2
—u
0 0

This vector is invariant under both the rotation matrix of Eq.
(2.14 and the phase-shift matrix of E¢2.16. Repeated
applications of these matrices lead to a three-parameter
group of rotations applicable to the three-dimensional space
of (5,$;,S3).

Not all the impure-state density matrices take the form of
Eqg. (3.6). In general, if they are brought to a diagonal form,

(3.4  the matrix takes the form

Fi(u)=

o r ©c c
O O O

1+0%2  —v?2
v22  1-v?2
0 0

u —U

c

Fo(v)=

O - O O
oc

1(1+cosy 0

2 0 1-cosy/’ 3.8

These mathematical expressions were first discovered
Wigner in 1939[7] in connection with the internal space-
time symmetries of relativistic particles. They went through
a stormy history, but it is gratifying to note that they serve a .
useful purpose for studying interferometers where each ma- _,| sinh7
7

trix corresponds to an operation which can be performed in 0 '
laboratories. 0

TheF; andF, matrices commute with each other, and the
multiplication of these leads to the form with

bé/nd the corresponding Stokes four-vector is

coshn

(3.9

u 1 1+cosy

1+(u?+v?)/2  —(u?+0vd)/2 _
=5 In—l—COS)(' (3.10

(UP+vd)2  1-(u?+vd)/2

u —u

v

ol The matrix which transforms Ed3.7) to Eq. (3.9 is the
1 squeeze matrix of E42.18). The question then is whether it
is possible to transform the pure state of Eg.3) to the

(3.5 impure state of Eq(3.9) or to Eq.(3.7).

) ) ) In order to see the problem in terms of thx 2 density

This matrix contains two parameters. _ matrix, let us go back to the pure-state density matrix of Eq.
Let us go back to the phase-shift matrix of HG.16). (3.2). Under the rotation of Eq2.2),

This matrix also leaves the Stokes vector of E33) invari-

ant. If we define the “little group” as the maximal subgroup (cos{XIZ) —sin(X/Z)) ( 1 0)( cog x/2) sin(X/Z))

of the Lorentz group which leaves a Stokes vector invariant| _. o ;

the little group for the Stokes vector of E@.3) consists of sin(x/2)  cosx/2) J10 0 Sin(x/2) - cos x/2)

the transformation matrices given in Eq2.16 and(3.5). (3.11
Next, if the phase relation is completely random, and thethe pure-state density matrix becomes

first and second components have the same amplitude, the

Fa(u)Fy(v)=

o +» © C

v -0

density matrix becomes 1(1+cosy siny ) (3.12
2\ siny 1-—cosy/’ '
1/2 0 . .
0 12 (3.6 For the present case ofx2 density matrices, the trace of

the matrix is one for both pure and impure cases. The trace

of the (matrixY is 1 for the pure state, while it is less than 1
Here is the question: Is there a2 matrix which will trans-  for impure states.
form the pure-state density matrix of E¢3.2 into the The next question is whether there is &2 matrix which
impure-state matrix of Eq3.6)? The answer within the sys- will eliminate the off-diagonal elements of the above expres-
tem of matrices of the form given in E(R.9) is no, because sion that will also lead to the expression of E8.8). In order
the determinant of the pure-state density matrix is zero whiléo answer this question, let us note that the determinant of
that for the impure-state matrix is 1/4. Is there a way to deathe density matrix vanishes for the pure state, while it is
with this problem? We shall return to this problem in Sec. V.nonzero for impure states. The Lorentz-like transformations
In this section, we restrict ourselves to the unimodular transef Eq. (3.1) leave the determinant invariant. Thus it is not
formation of Eq.(3.1) which preserves the value of the de- possible to transform a pure state into an impure state by
terminant of the density matrix. The Stokes four-vector cor-means of the transformations from the six-parameter Lorentz
responding to the above density matrix is group. Then is it possible to achieve this purpose using 2



PRE 61 INTERFEROMETERS AND DECOHERENCE MATRICES 5911

X2 matrices not belonging to this group. We do not know The story is different for the little groups. Let us start with
the answer to this question. We are thus forced to resort tthe rotation matrix of Eq(2.14), and apply to this matrix the

4x 4 matrices applicable to the Stokes four-vector. transformation matrix of Eq4.1). Then
IV. DECOHERENCE EFFECTS ON THE LITTLE GROUPS coshy sinhn 0 0y /1 0 o 0
_ _ ) ) ) sinhnp coshnp 0 0|| 0 cosf# —sind O

We are interested in a transformation which will change )

the density matrix of Eq(3.2) to Eq.(3.6). For this purpose, 0 0 1 0J}l0 sing cost O

we can use the Stokes four-vector consisting of the four el- 0 0 o 1/\o 0 0 1

ements of the density matrix. The question then is whether it )

is possible to find a transformation matrix which will trans- coshp —sinhp 0 O

form the pure-state four-vector of E(3.3) to the impure- —sinhy coshy 0 O

state four-vector of Eq(3.7). X . (4.4
Mathematically, it is more convenient to ask whether the 0 0 10

inverse of this process is possible: whether it is possible to 0 0 0 1

transform the four-vector of Eq3.7) to that of Eq.(3.3). ) ) _

This is known in mathematics as the contraction of the threelf 7 iS zero, the above expression becomes the rotation ma-
dimensional rotation group into the two-dimensional Euclid-trix of Eq. (2.14. If 7 becomes infinite, it becomes the little-
ean groud8]. Let us apply the squeeze matrix of 8.1  group matrixF,(u) of Eq. (3.4) applicable to the pure state

to the four-vector of Eq(37) This can be written as of Eq. (33) The details of this calculation for the case of
Lorentz transformations are given in the 1986 paper by Han
coshnp sinhp 0 0\ /1 coshy et al. [13]. We are then led to the question of whether one
sinh coshn 0 ollo sinh little-group transformation matrix can be transformed from
7 7 = g . (4.1  the other.
0 0 1 0/|0 0 If we carry out the matrix algebra of E¢4.4), the result
0 0 0 1/\0 0 1S
2 2
After an appropriate normalization, the right-hand side of the [ 1T auw/2  —auw/2 auw 0
above equation becomes like the pure-state vector of Eq. auw/2 1—u?w/2 uw 0
(3.9 in the limit of large 5, as coshy becomes equal to _ 4 2\ 2 ,
sinh# in the infinites limit. This transformation is from a auw uw 1=(1=afuwiz 0
mixed state to a pure or almost-pure state. Since we are 0 0 0 1
interested in the transformation from the pure state of Eq. (4.5

(3.3 to the impure state of Eq3.7), we have to consider an

. : where
inverse of the above equation:

. 0
coshp —sinhp 0 0\ /coshy 1 a=tanhy, u=—2tar(§,
—sinhp coshp 0 O] sinhy 0
0 0 10 o | |o 1
w= . (4.6)
0 0 0 1 0 0 1+ (1— a®)tarf(6/2)

4.2
If «=0, the above expression becomes the rotation matrix of
However, the above equation does not start with the pureEq. (2.14. If a=1, it becomes thé; matrix of Eq.(3.4).

state four-vector. If we apply the same matrix to the pureHere we used the parameterinstead of. In terms of this
state matrix, the result is parameter, it is possible to make an analytic continuation
from the pure state withw=1 to an impure state witlw

coshnp —sinhp 0 0} /1 1 <1 includinga=0.
—sinhyp coshp 0 O} 1 1 On the other hand, we should keep in mind that the de-
=e 7 terminant of the density matrix is zero for the pure state,
0 0 1 0J})0 0 while it is nonzero for all impure states. Far=1, the de-
0 0 0 1/ \0 0 terminant vanishes, but it is nonzero and stays the same for

(4.3  all nonzero values of less than 1 and greater than or equal

. ] ) to zero. The analytic expression of E@.6) hides this sin-
The resulting four-vector is proportional to the pure-stateyyar nature of the little groupL3].

four-vector, and is definitely not an impure-state four-vector.

The inverse of the transformation of E@L.1) is not ca-
pable of bringing the pure-state vector into an impure-state
vector. Let us go back to E@4.1), it is possible to bring a We are interested in the decoherence effect on the density
impure-state into a pure state only in the limit of infinige ~ matrix. We are particularly interested in the mechanism
Otherwise, it is not possible. It is definitely not possible if we where the off-diagonal elemengs, andS,; become smaller
take into account experimental considerations. due to time average or phase-randomizing pro¢éds If

V. DECOHERENCE MATRICES
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this happens, we can apply the following decoherence matrix

to the Stokes four-vector: DB()\)=< (5.7

et 0
0 e*)’
10 0O 0

01 0 0 but the rotation matrix does not change the two-component
00 e2 0 | (5.1)  vectorVg. _ _

Let us go back to the two-dimensional spacevaf, and

0 0

0 e 2 its 2X 2 transformation matrices. The applicable matrices
_ _ DA(N) andR,(6) of Eq. (5.5 are strikingly similar to the
which can also be written as 2x 2 matrices given in Eqg2.6) and(2.2), respectively. If

we replace the parametersin S(7) and 6 in R(6) by 2\

A
e 0 0 0 and 29, respectively, they beconie, andRg of Eq. (5.5).
N 0 e 0 With these two matrices, we can repeat the calculations
e 0 0 e 0] (5.2 for the Wigner rotations and Iwasawa decompostions dis-
N cussed in our earlier papgf]. It is possible to perform ex-
0 0 0 e periments to test these mathematical relations.
where e " is the overall decoherence factor. For conve-
nience, we define the decoherence matrix as VI. CONCLUDING REMARKS
e 0 0 0 In this paper, we have discussed two-beam interferom-
— 0 eters within the framework of the six-parameter Lorentz
e

5.3 group. It has been shown that beam splitters and beam syn-
' thesizers can be represented by 2 rotation matrices. The
phase shift can also be represented by22rotation matrices
applicable to spinor systems. As for attenuation, we intro-

This matrix cannot be constructed from the six-parametefluced 2<2 squeeze matrices. The combined effect of these

D(v)= e 0

0 e

0

0
0 O

Lorentz group applicable to the Stokes four-vectors. transformations leads to a two-by-two representation of the
If we combine this decoherence matrix with the LorentzSIX-parameter Lorentz group. . o
group, the result will be a 15-parameter group of 4 ma- We have found that the mathematical formalism given in

trices isomorphic t@®(3,3) which is beyond the scope of the tiS paper is identical to the formalism we presented in our
present papdi5]. In order to extract the symmetry of physi- earlier papers for polarization optics. In this series of papers,
cal interest, let us go back to the<4t matricesR(¢),P(¢),  Our purpose has been to minimize the group theoretical lan-
andS(7) of Egs.(2.14, (2.16, and(2.18), respectively. The 9uage and write down formulas close to what we observe in

phase-shift matrix of Eq2.16 commutes with the decoher- e réal world. In this paper, we were able to bypass com-
ence matrix. pletely the group theoretical formality known as the Lie al-

As we discussed in our earlier paper on polarization Opgebra of the Lorentz group consisting of generators and their

tics [2], the decoherence matrix and the rotation matrix will ¢/0S€d commutation relations. _ _
lead to two-dimensional squeeze transformations applicable With this improved mathematical technique, we discussed
to the two-component vector two-beam physics in terms of the little groups using only

matrices which are realizable in laboratories. It has been
S, shown that the little groups for pure and impure states are
) . (5.4 different. It was noted that analytic continuation from a pure
S state to an impure state is possible for the little groups. On
The 4x4 D(\) matrix of Eq.(5.3) and the rotation matrix the other hand, this transformation do_es not exist within the
of Eq. (2.14 become reduced to 5|_x-para_meter Lorentz group, but requires an extraddma-
trix applicable to the Stokes four-vector, called the decoher-
et 0 ) ence matrix.

o]

B The augmentation of this decoherence matrix into the
0 e Lorentz group will lead to a larger group which is beyond the
. (5.5 scope of this papefl5]. However, this larger group has
cos¢ —sing 0(2,1)- or SU1,1)-like subgroups which are quite familiar
sing cosf |’ to us from the squeezed states of light, and the Lorentz group
formulation of the polarization optic2]. We are fortunate
As for the remaining components of the Stokes parameterso observe, within the framework of this decoherence matrix,
we can define another two-component vector as mathematical consequence which will lead to experiments on
Wigner rotations and Iwasawa decompositions which are
So possible in both polarization optics and interferometers.
S;)° It will be a challenging problem to translate what we did
in this paper to the language of quantum optics. The rotation
The decoherence matrix applicable to this two-componenbperations corresponding to phase shifts and rotations around
vector is the direction of the propagation can be formulated in terms

DA()\):(

RA( 9)=<

Vg= (5.6)
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of the two-mode squeezed stafé@$]. However, the squeeze stance, three-beam interferometers are quite common. This
transformations discussed in this paper correspond to the losgll open up a new research line for studying symmetry
of intensity, which cannot be translated into quantum opticsproperties in optics. The power of group theoretical ap-
On the other hand, the decoherence matrix can be accommproaches is that we can establish the symmetry properties in
dated into the density-matrix formalism. Indeed, they all areone branches of physics to those in a different field using the
challenging problems. isomorphism and/or homomorphism of group theory. As for

Furthermore, unlike the case of polarization optics, therdghe three-beam case, we are happy to note a recent paper by
can be more than two beams for interferometers. For inRowe, Sanders, and de Guige].
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