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Interferometers and decoherence matrices
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It is shown that the Lorentz group is the natural language for two-beam interferometers if there are no
decoherence effects. This aspect of the interferometer can be translated into six-parameter representations of
the Lorentz group, as in the case of polarization optics where there are two orthogonal components of one light
beam. It is shown that there are groups of transformations which leave the coherency or density matrix
invariant, and this symmetry property is formulated within the framework of Wigner’s little groups. An
additional mathematical apparatus is needed for the transition from a pure state to an impure state. Decoher-
ence matrices are constructed for this process, and their properties are studied in detail. Experimental tests of
this symmetry property are possible.

PACS number~s!: 42.25.Ja, 02.20.2a
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I. INTRODUCTION

In our earlier papers@1–4#, we formulated polarization
optics in terms of the 232 and 434 representations of th
six-parameter Lorentz group. It was noted that the tw
component Jones vector and the four-component Stokes
rameters are like the relativistic spinor and the Minkowsk
four-vector, respectively. We were able to identify the
tenuator, rotator, and phase shifter with appropriate trans
mation matrices of the Lorentz group. It was noted that
two-element Jones vector is like the two-component P
spinor, and that the four Stokes parameters act like the
ments of a Minkowskian four-vector.

The purpose of this paper is to show that the mathema
of polarization optics is also applicable to interferomete
Our reasoning is that polarization optics is basically
physics of two plane waves. The same is true for two-be
interferometers. We need mathematical devices which
perform phase shifts between the waves, and which will t
care of attenuations at different rates. In the case of inter
ometers, it is possible to achieve the beam split and synth
by rotation matrices. We can use the matrices of the abo
mentioned Lorentz group in order to achieve these ba
physical operations.

In addition, in this paper, we discuss the mathemat
device which will describe the decoherence effect due
random phases. For this purpose, we need density matr
However, the coherency matrix serves as the density ma
and its four elements constitute the four components of
Stokes vector@5,6#. It was noted in our previous paper that
is possible to construct a 434 decoherence matrix whic
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will transform a pure-state Stokes vector into a mixed-st
Stokes vector. Unlike the case of attenuations, rotations
beam splits and syntheses, the decoherence matrix doe
belong to the Lorentz group.

In order to study the decoherence process more caref
we borrow the concept of Wigner’s little group originall
developed for studying internal space-time symmetries of
ementary particles@7,8#. Wigner’s little group is the maxima
subgroup of the Lorentz group whose transformations le
the four-momentum of a given particle invariant. In th
present case, the little group consists of transformations o
given density matrix which will leave that matrix invarian
It is shown in this paper that the little group for pure states
like that for massless particles, while the little group for im
pure states is like that for massive particles. The transition
the little group from a pure to impure state is discussed
detail.

In Sec. II, we show how each element in the two-be
interferometer system corresponds to a transformation ma
in the Lorentz group. The combined effect is the 232 rep-
resentation of the six-parameter Lorentz group. In Sec. II
is pointed out that the coherency matrix can also be defi
for the interferometer system, and that this matrix serves
the density matrix. The transformation property of the de
sity matrix is discussed in detail. In Sec. IV, we introduce t
little group which will leave a given density matrix invarian
It is noted that the little group for pure states has a symme
property quite different from that for impure states. In Se
V, the decoherence matrices are discussed in detail.
though the augmentation of this matrix to the Lorentz gro
leads to a large group, there exist subgroups exhibiting s
metry properties familiar to us. Possible experiments w
the decoherence matrix are suggested.

II. FORMULATION OF THE PROBLEM

Typically, one beam is divided into two by a beam spl
ter. We can write the incoming beam as
5907 ©2000 The American Physical Society
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C5S c1

c2
D 5S exp$ i ~kz2vt !%

0 D . ~2.1!

Then the beam splitter can be written in the form of a ro
tion matrix @9#

R~u!5S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D , ~2.2!

which transforms the column vector of Eq.~2.1! into

S c1

c2
D 5S @cos~u/2!#exp$ i ~kz2vt !%

2@sin~u/2!exp$ i ~kz2vt !%
D . ~2.3!

The first beamc1 of Eq. ~2.1! is now split intoc1 andc2 of
Eq. ~2.3!. The intensity is conserved. If the rotation angleu
is -p/4, the initial beam is divided into two beams of th
same intensity and the same phase@10#.

These two beams go through two different optical p
lengths, resulting in a phase difference. If the phase dif
ence isf, the phase shift matrix is

P~f!5S e2 if/2 0

0 eif/2D . ~2.4!

When reflected from mirrors, or while going throug
beam splitters, there are intensity losses for both beams.
rate of loss is not the same for the beams. This results in
attenuation matrix of the form

S e2h1 0

e2h2
D 5e2(h11h2)/2S eh/2 0

0 e2h/2D , ~2.5!

with h5h22h1. This attenuator matrix tells us that the ele
tric fields are attenuated at two different rates. The expon
tial factor e2(h11h2)/2 reduces both components at the sa
rate and does not affect the degree of polarization. The ef
of polarization is solely determined by the squeeze matr

S~h!5S eh/2 0

0 e2h/2D . ~2.6!

In the detector or the beam synthesizer, the two bea
undergo a superposition. This can be achieved by the r
tion matrix like the one given in Eq.~2.2! @9#. For instance,
if the angleu is 90°, the rotation matrix takes the form

1

A2
S 1 21

1 1 D . ~2.7!

If this matrix is applied to the column vector of Eq.~2.3!, the
result is

1

A2
S c12c2

c11c2
D . ~2.8!

The upper and lower components show the interferen
with negative and positive signs, respectively.

We have shown in our previous papers that repeated
plications of the rotation matrices of the form of Eq.~2.2!,
shift matrices of the form of Eq.~2.4! and squeeze matrice
-
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of the form of Eq.~2.6! lead to a 232 representation of the
six-parameter Lorentz group. The transformation matrix
general takes the form

G5S a b

g d D , ~2.9!

applicable to the column vector of Eq.~2.1!, where all four
elements are complex numbers with the condition that
determinant of the matrix be 1.

Although we can borrow all the elegant mathematic
identities of the 232 representations of the Lorentz grou
this formalism does not allow us to describe the loss of
herence within the interferometer system. In order to stu
this effect, we have to construct the coherency matrix

C5S S11 S12

S21 S22
D , ~2.10!

with

S115^c1* c1&, S225^c2* c2&,
~2.11!

S125^c1* c2&, S215^c2* c1&.

It is sometimes more convenient to use the following co
binations of parameters:

S05S111S22,

2.12S15S112S22,
~2.12!

S25S121S21,

S352 i ~S122S21!.

These four parameters are called the Stokes parameters i
literature@11,12#, usually in connection with polarized ligh
waves. In the present paper, we are applying these pa
eters to two separate beams in a given interferometer sys

The Stokes parameters, originally developed for polari
tion optics, are becoming applicable to other branches
physics dealing with two orthogonal states. In this paper,
use these parameters for interferometers.

We have shown previously@2# that the 434 transforma-
tion matrices applicable to the Stokes parameters are
Lorentz-transformation matrices applicable to the space-t
Minkowskian vector (t,z,x,y). This allows us to study
space-time symmetries in terms of the Stokes parame
which are applicable to interferometers. Let us first see h
the rotation matrix of Eq.~2.2! is translated into the 434
formalism. In this case,

a5d5cos~u/2!, g52b5sin~u/2!. ~2.13!

The corresponding 434 matrix takes the form@4#

R~u!5S 1 0 0 0

0 cosu 2sinu 0

0 sinu cosu 0

0 0 0 1

D . ~2.14!
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et us next see how the phase-shift matrix of Eq.~2.4! is
translated into this four-dimensional space. For this 232
matrix,

a5e2 if/2, b5g50, d5eif/2. ~2.15!

For these values, the 434 transformation matrix takes th
form @4#

P~f!5S 1 0 0 0

0 1 0 0

0 0 cosf 2sinf

0 0 sinf cosf

D . ~2.16!

For the squeeze matrix of Eq.~2.6!,

a5eh/2, b5g50, d5e2h/2. ~2.17!

As a consequence, its 434 equivalent is

S~h!5S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D . ~2.18!

If the above matrices are applied to the four-dimensio
Minkowskian space of (t,z,x,y), the above squeeze matr
will perform a Lorentz boost along thez or S1 axis, withS0
as the time variable. The rotation matrix of Eq.~2.14! will
perform a rotation around they or S3 axis, while the phase
shifter of Eq.~2.16! performs a rotation around thez or the
S1 axis. Matrix multiplications withR(u) andP(f) lead to
the three-parameter group of rotation matrices applicabl
the three-dimensional space of (S1 ,S2 ,S3).

The phase shifterP(f) of Eq. ~2.16! commutes with the
squeeze matrix of Eq.~2.18!, but the rotation matrixR(u)
does not. This aspect of matrix algebra leads to many in
esting mathematical identifies which can be tested in lab
tories. One of the interesting cases is that we can produ
rotation by performing three squeezes@4#. Another interest-
ing case is a combination of squeeze and rotation will p
duce a matrix which will convert numerical multiplicatio
into addition. This aspect, known as the Iwasawa decom
sition, is discussed in detail in Ref.@4#.

III. DENSITY MATRICES AND THEIR LITTLE GROUPS

According to the definition of the density matrix@6#, the
coherency matrix of Eq.~2.10! is also the density matrix
Since we discussed transformation properties of cohere
matrices in our earlier papers@1,2#, we can start here with
those results on this subject.

The most effective way of formulating the symmet
property of a given physical system is to construct a group
transformations which leave the system invariant. This c
cept was originally developed by Wigner@7# for internal
space-time symmetries of relativistic particles. Wigne
little group is the maximal subgroup of the Lorentz gro
whose transformations leave the four-momentum of a gi
particle invariant. For instance, for a particle at rest, the li
group is the three-parameter rotation group. The rotations
l
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not change the four-momentum of the particle, even thou
they change the direction of the spin. There are also mass
particles which cannot be brought to rest. This is the rea
why the little group for a massive particle is different fro
that of the massless particle. The little group for massl
particles is like ~or locally isomorphic to! the two-
dimensional Euclidean group@7,8#.

Indeed, in Ref.@4#, we discussed Wigner rotations an
Iwasawa decompositions rotations applicable to massive
massless particles, respectively, and how these little-gr
transformations can be applied to the Stokes four-vectors
this section, we shall see that the Stokes vectors for pure
impure states are like the four-momentum of the mass
and massive particles, respectively.

In the following discussion, we will need transformation
of the Stokes four-vectors and the corresponding transfor
tions of the 232 density matrices. We are quite familia
with 434 matrices applicable to the Stokes vectors. For
232 density matrices, the transformation takes the form

Under the influence of theG transformation given in Eq.
~2.9!, this coherency matrix is transformed as

C85GCG†5S S118 S128

S218 S228
D 5S a b

g d D S S11 S12

S21 S22
D

3S a* g*

b* d* D , ~3.1!

whereC andG are the density matrix and the transformati
matrix given in Eqs.~2.10! and ~2.9!, respectively. Accord-
ing to the basic property of the Lorentz group, these tra
formations do not change the determinant of the density
trix C. Transformations which do not change the determin
are called unimodular transformations.

As we shall see in this section, the determinant for p
states is zero, while for that for mixed states does not van
Is there then a transformation matrix which will change th
determinant within the Lorentz group. The answer is no. T
is the basic issue we would like to address in this sectio

If the phase difference between the two waves rema
intact, the system is said to in a pure state, and the den
matrix can be brought to the form

S 1 0

0 0D , ~3.2!

through the transformation of Eq.~3.1! with a suitable choice
of the G matrix. For the pure state, the Stokes four-vec
takes the form

S 1

1

0

0

D . ~3.3!

In order to study the symmetry properties of the dens
matrix, let us ask the following question. Is there a group
transformation matrices which will leave the above dens
matrix invariant? In answering this question, it is more co
venient to use the Stokes four-vector. The column vecto
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Eq. ~3.3! is invariant under the operation of the phase shif
P(f) of Eq. ~2.16!. In addition, it is invariant under the
following two matrices:

F1~u!5S 11u2/2 2u2/2 u 0

u2/2 12u2/2 u 0

u 2u 1 0

0 0 0 1

D ,

F2~v !5S 11v2/2 2v2/2 0 v

v2/2 12v2/2 0 v

0 0 1 0

u 2v 0 1

D . ~3.4!

These mathematical expressions were first discovered
Wigner in 1939@7# in connection with the internal space
time symmetries of relativistic particles. They went throu
a stormy history, but it is gratifying to note that they serve
useful purpose for studying interferometers where each
trix corresponds to an operation which can be performed
laboratories.

TheF1 andF2 matrices commute with each other, and t
multiplication of these leads to the form

F2~u!F2~v !5S 11~u21v2!/2 2~u21v2!/2 u u

~u21v2!/2 12~u21v2!/2 u v

u 2u 1 0

v 2v 0 1

D .

~3.5!

This matrix contains two parameters.
Let us go back to the phase-shift matrix of Eq.~2.16!.

This matrix also leaves the Stokes vector of Eq.~3.3! invari-
ant. If we define the ‘‘little group’’ as the maximal subgrou
of the Lorentz group which leaves a Stokes vector invaria
the little group for the Stokes vector of Eq.~3.3! consists of
the transformation matrices given in Eqs.~2.16! and ~3.5!.

Next, if the phase relation is completely random, and
first and second components have the same amplitude
density matrix becomes

S 1/2 0

0 1/2D . ~3.6!

Here is the question: Is there a 232 matrix which will trans-
form the pure-state density matrix of Eq.~3.2! into the
impure-state matrix of Eq.~3.6!? The answer within the sys
tem of matrices of the form given in Eq.~2.9! is no, because
the determinant of the pure-state density matrix is zero w
that for the impure-state matrix is 1/4. Is there a way to d
with this problem? We shall return to this problem in Sec.
In this section, we restrict ourselves to the unimodular tra
formation of Eq.~3.1! which preserves the value of the d
terminant of the density matrix. The Stokes four-vector c
responding to the above density matrix is
r
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S 1

0

0

0

D . ~3.7!

This vector is invariant under both the rotation matrix of E
~2.14! and the phase-shift matrix of Eq.~2.16!. Repeated
applications of these matrices lead to a three-param
group of rotations applicable to the three-dimensional sp
of (S1 ,S2 ,S3).

Not all the impure-state density matrices take the form
Eq. ~3.6!. In general, if they are brought to a diagonal form
the matrix takes the form

1

2 S 11cosx 0

0 12cosx
D , ~3.8!

and the corresponding Stokes four-vector is

e2hS coshh

sinhh

0

0

D , ~3.9!

with

h5
1

2
ln

11cosx

12cosx
. ~3.10!

The matrix which transforms Eq.~3.7! to Eq. ~3.9! is the
squeeze matrix of Eq.~2.18!. The question then is whether
is possible to transform the pure state of Eq.~3.3! to the
impure state of Eq.~3.9! or to Eq.~3.7!.

In order to see the problem in terms of the 232 density
matrix, let us go back to the pure-state density matrix of E
~3.2!. Under the rotation of Eq.~2.2!,

S cos~x/2! 2sin~x/2!

sin~x/2! cos~x/2!
D S 1 0

0 0D S cos~x/2! sin~x/2!

2sin~x/2! cos~x/2!
D ,

~3.11!

the pure-state density matrix becomes

1

2 S 11cosx sinx

sinx 12cosx
D . ~3.12!

For the present case of 232 density matrices, the trace o
the matrix is one for both pure and impure cases. The tr
of the (matrix)2 is 1 for the pure state, while it is less than
for impure states.

The next question is whether there is a 232 matrix which
will eliminate the off-diagonal elements of the above expr
sion that will also lead to the expression of Eq.~3.8!. In order
to answer this question, let us note that the determinan
the density matrix vanishes for the pure state, while it
nonzero for impure states. The Lorentz-like transformatio
of Eq. ~3.1! leave the determinant invariant. Thus it is n
possible to transform a pure state into an impure state
means of the transformations from the six-parameter Lore
group. Then is it possible to achieve this purpose using
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32 matrices not belonging to this group. We do not kno
the answer to this question. We are thus forced to reso
434 matrices applicable to the Stokes four-vector.

IV. DECOHERENCE EFFECTS ON THE LITTLE GROUPS

We are interested in a transformation which will chan
the density matrix of Eq.~3.2! to Eq.~3.6!. For this purpose,
we can use the Stokes four-vector consisting of the four
ements of the density matrix. The question then is whethe
is possible to find a transformation matrix which will tran
form the pure-state four-vector of Eq.~3.3! to the impure-
state four-vector of Eq.~3.7!.

Mathematically, it is more convenient to ask whether t
inverse of this process is possible: whether it is possible
transform the four-vector of Eq.~3.7! to that of Eq.~3.3!.
This is known in mathematics as the contraction of the thr
dimensional rotation group into the two-dimensional Eucl
ean group@8#. Let us apply the squeeze matrix of Eq.~2.18!
to the four-vector of Eq.~3.7!. This can be written as

S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D S 1

0

0

0

D 5S coshh

sinhh

0

0

D . ~4.1!

After an appropriate normalization, the right-hand side of
above equation becomes like the pure-state vector of
~3.3! in the limit of large h, as coshh becomes equal to
sinhh in the infinite-h limit. This transformation is from a
mixed state to a pure or almost-pure state. Since we
interested in the transformation from the pure state of
~3.3! to the impure state of Eq.~3.7!, we have to consider an
inverse of the above equation:

S coshh 2sinhh 0 0

2sinhh coshh 0 0

0 0 1 0

0 0 0 1

D S coshh

sinhh

0

0

D 5S 1

0

0

0

D .

~4.2!

However, the above equation does not start with the pu
state four-vector. If we apply the same matrix to the pu
state matrix, the result is

S coshh 2sinhh 0 0

2sinhh coshh 0 0

0 0 1 0

0 0 0 1

D S 1

1

0

0

D 5e2hS 1

1

0

0.

D
~4.3!

The resulting four-vector is proportional to the pure-st
four-vector, and is definitely not an impure-state four-vect

The inverse of the transformation of Eq.~4.1! is not ca-
pable of bringing the pure-state vector into an impure-s
vector. Let us go back to Eq.~4.1!, it is possible to bring a
impure-state into a pure state only in the limit of infiniteh.
Otherwise, it is not possible. It is definitely not possible if w
take into account experimental considerations.
to
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The story is different for the little groups. Let us start wi
the rotation matrix of Eq.~2.14!, and apply to this matrix the
transformation matrix of Eq.~4.1!. Then

S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D S 1 0 0 0

0 cosu 2sinu 0

0 sinu cosu 0

0 0 0 1

D
3S coshh 2sinhh 0 0

2sinhh coshh 0 0

0 0 1 0

0 0 0 1

D . ~4.4!

If h is zero, the above expression becomes the rotation
trix of Eq. ~2.14!. If h becomes infinite, it becomes the little
group matrixF1(u) of Eq. ~3.4! applicable to the pure stat
of Eq. ~3.3!. The details of this calculation for the case
Lorentz transformations are given in the 1986 paper by H
et al. @13#. We are then led to the question of whether o
little-group transformation matrix can be transformed fro
the other.

If we carry out the matrix algebra of Eq.~4.4!, the result
is

S 11au2w/2 2au2w/2 auw 0

au2w/2 12u2w/2 uw 0

auw 2uw 12~12a2!u2w/2 0

0 0 0 1

D ,

~4.5!

where

a5tanhh, u522 tanS u

2D ,

w5
1

11~12a2!tan2~u/2!
. ~4.6!

If a50, the above expression becomes the rotation matri
Eq. ~2.14!. If a51, it becomes theF1 matrix of Eq. ~3.4!.
Here we used the parametera instead ofh. In terms of this
parameter, it is possible to make an analytic continuat
from the pure state witha51 to an impure state witha
,1 includinga50.

On the other hand, we should keep in mind that the
terminant of the density matrix is zero for the pure sta
while it is nonzero for all impure states. Fora51, the de-
terminant vanishes, but it is nonzero and stays the same
all nonzero values ofa less than 1 and greater than or equ
to zero. The analytic expression of Eq.~4.6! hides this sin-
gular nature of the little group@13#.

V. DECOHERENCE MATRICES

We are interested in the decoherence effect on the den
matrix. We are particularly interested in the mechani
where the off-diagonal elementsS12 andS21 become smaller
due to time average or phase-randomizing process@14#. If
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this happens, we can apply the following decoherence ma
to the Stokes four-vector:

S 1 0 0 0

0 1 0 0

0 0 e22l 0

0 0 0 e22l

D , ~5.1!

which can also be written as

e2lS el 0 0 0

0 el 0 0

0 0 e2l 0

0 0 0 e2l

D , ~5.2!

where e2l is the overall decoherence factor. For conv
nience, we define the decoherence matrix as

D~l!5S el 0 0 0

0 el 0 0

0 0 e2l 0

0 0 0 e2l

D . ~5.3!

This matrix cannot be constructed from the six-parame
Lorentz group applicable to the Stokes four-vectors.

If we combine this decoherence matrix with the Loren
group, the result will be a 15-parameter group of 434 ma-
trices isomorphic toO(3,3) which is beyond the scope of th
present paper@15#. In order to extract the symmetry of phys
cal interest, let us go back to the 434 matricesR(u),P(f),
andS(h) of Eqs.~2.14!, ~2.16!, and~2.18!, respectively. The
phase-shift matrix of Eq.~2.16! commutes with the decoher
ence matrix.

As we discussed in our earlier paper on polarization
tics @2#, the decoherence matrix and the rotation matrix w
lead to two-dimensional squeeze transformations applic
to the two-component vector

VA5S S1

S2
D . ~5.4!

The 434 D(l) matrix of Eq.~5.3! and the rotation matrix
of Eq. ~2.14! become reduced to

DA~l!5S el 0

0 e2lD ,

~5.5!

RA~u!5S cosu 2sinu

sinu cosu D .

As for the remaining components of the Stokes paramet
we can define another two-component vector as

VB5S S0

S3
D . ~5.6!

The decoherence matrix applicable to this two-compon
vector is
ix

-

r

-
l
le

rs,

nt

DB~l!5S el 0

0 e2lD , ~5.7!

but the rotation matrix does not change the two-compon
vectorVB .

Let us go back to the two-dimensional space ofVA , and
its 232 transformation matrices. The applicable matric
DA(l) and RA(u) of Eq. ~5.5! are strikingly similar to the
232 matrices given in Eqs.~2.6! and ~2.2!, respectively. If
we replace the parametersh in S(h) andu in R(u) by 2l
and 2u, respectively, they becomeDA andRB of Eq. ~5.5!.

With these two matrices, we can repeat the calculati
for the Wigner rotations and Iwasawa decompostions d
cussed in our earlier paper@4#. It is possible to perform ex-
periments to test these mathematical relations.

VI. CONCLUDING REMARKS

In this paper, we have discussed two-beam interfero
eters within the framework of the six-parameter Loren
group. It has been shown that beam splitters and beam
thesizers can be represented by 232 rotation matrices. The
phase shift can also be represented by 232 rotation matrices
applicable to spinor systems. As for attenuation, we int
duced 232 squeeze matrices. The combined effect of th
transformations leads to a two-by-two representation of
six-parameter Lorentz group.

We have found that the mathematical formalism given
this paper is identical to the formalism we presented in
earlier papers for polarization optics. In this series of pap
our purpose has been to minimize the group theoretical
guage and write down formulas close to what we observe
the real world. In this paper, we were able to bypass co
pletely the group theoretical formality known as the Lie a
gebra of the Lorentz group consisting of generators and t
closed commutation relations.

With this improved mathematical technique, we discuss
two-beam physics in terms of the little groups using on
matrices which are realizable in laboratories. It has be
shown that the little groups for pure and impure states
different. It was noted that analytic continuation from a pu
state to an impure state is possible for the little groups.
the other hand, this transformation does not exist within
six-parameter Lorentz group, but requires an extra 434 ma-
trix applicable to the Stokes four-vector, called the decoh
ence matrix.

The augmentation of this decoherence matrix into
Lorentz group will lead to a larger group which is beyond t
scope of this paper@15#. However, this larger group ha
O(2,1)- or SU~1,1!-like subgroups which are quite familia
to us from the squeezed states of light, and the Lorentz gr
formulation of the polarization optics@2#. We are fortunate
to observe, within the framework of this decoherence mat
mathematical consequence which will lead to experiments
Wigner rotations and Iwasawa decompositions which
possible in both polarization optics and interferometers.

It will be a challenging problem to translate what we d
in this paper to the language of quantum optics. The rota
operations corresponding to phase shifts and rotations aro
the direction of the propagation can be formulated in ter
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of the two-mode squeezed states@16#. However, the squeez
transformations discussed in this paper correspond to the
of intensity, which cannot be translated into quantum opt
On the other hand, the decoherence matrix can be accom
dated into the density-matrix formalism. Indeed, they all
challenging problems.

Furthermore, unlike the case of polarization optics, th
can be more than two beams for interferometers. For
t,

n

ss
.
o-

e

e
-

stance, three-beam interferometers are quite common.
will open up a new research line for studying symme
properties in optics. The power of group theoretical a
proaches is that we can establish the symmetry propertie
one branches of physics to those in a different field using
isomorphism and/or homomorphism of group theory. As
the three-beam case, we are happy to note a recent pap
Rowe, Sanders, and de Guise@17#.
ds
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PoincaréGroup ~Reidel, Dordrecht, 1986!; Y. S. Kim and M.
E. Noz, Phase Space Picture of Quantum Mechanics~World
Scientific, Singapore, 1991!.
J.

@9# B. C. Sanders and A. Mann, Group 22,Proceedings of the
22nd International Colloquium on Group Theoretical Metho
in Physics, edited by S. P. Cornelet al. ~International Press,
Boston, 1999!. See pp. 474–478.

@10# For earlier papers on beam splitters based on the SU~2! and
Sp~2! transformations, see R. A. Campos, B. E. A. Saleh, a
M. C. Teich, Phys. Rev. A40, 1371~1989!; A. Luis and L. L.
Sánchez-Soto, Quantum Semiclassic. Opt.7, 153 ~1995!.

@11# W. A. Shurcliff, Polarized Light ~Harvard University Press
Cambridge, MA, 1962!.

@12# E. Hecht, Am. J. Phys.38, 1156~1970!.
@13# D. Han, Y. S. Kim, and D. Son, J. Math. Phys.27, 2228

~1986!.
@14# D. F. McAlister and M. G. Raymer, Phys. Rev. A55, R1609

~1997!.
@15# D. Han, Y. S. Kim, and M. E. Noz, J. Math. Phys.36, 3940

~1995!.
@16# B. Yurke, S. McCall, and J. R. Klauder, Phys. Rev. A33, 4033

~1986!.
@17# D. J. Rowe, B. C. Sanders, and H. de Guise, J. Math. Phys40,

3604 ~1999!.


